&\\'\/‘ arathonTP,,

\\Protocol reference V1.1

anRTIH

A/ \\Copyrights

\\Copyrights

Inertia Systemes

73 rue des Colombes
Ange-Gardien, Québec
JOE 1EO
http://inertiasystemes.com
http://marathontp.info

MarathonTP protocol specification V1.1

http://inertiasystemes.com/
http://marathontp.info/

vA\M \\License
\\License

Attribution-NoDerivatives 4.0 International

S0

http://creativecommons.org/licenses/by-nd/4.0/deed.en

MarathonTP protocol specification V1.1

http://creativecommons.org/licenses/by-nd/4.0/deed.en

YaAM \\Revision process
\\Revision process

The MarathonTP protocol specification is not static. It is expected to evolve over time. To standardize
the development of the protocol it is the responsibility of Inertia Systemes to approve any changes. Any
user of the protocol may propose a revision to Inertia Systemes by means of communications available in
the section «Copyrights». Upon acceptance of the revision, Inertia Systemes is committed to providing the
community an updated version of this document.

MarathonTP protocol specification V1.1

vAM \\Warnings
\\Warnings

This reference manual is for informational purposes only and is provided "as is". The information
contained in this document are presented as a guide and not as a step by step process. We strongly
recommend that you engage additional expertise to further assess the requirements for your specific
environment.

INERTIA SYSTEMES RESERVES THE RIGHT TO MAKE CHANGES TO THE SPECIFICATIONS OF THE
PROTOCOL AT ANY TIME WITHOUT NOTICE.

USERS MUST ASSUME FULL RESPONSIBILITY FOR THE APPLICATION OF THE RULES MENTIONED HEREIN.
INERTIA SYSTEMES ASSUMES NO RESPONSIBILITY, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, RELATING TO THE APPLICATION OF THE RULES HEREIN.

Obtaining this document gives you no right to license for patents, trademarks, copyrights or other
intellectual property.

MarathonTP protocol specification V1.1

vAM \\Contents m

\\Contents
ANCOPYIIGNTS 1. 2
ANLECEINSE . 3
ANREVISION DTOCESS ...t 4
ANV ININGS ettt bttt 5
NNLIST OF TIGUIES . 8
NNLIST OF TADIES ... 9
T NNMINETOAUCTION .o 10
2 NNDIATE TYPES .. 11
2.1 NUMDETS rEPIESENTATION ... 12
2.2 NOEES ON TEXE STIINGS oo 12
3 N\MESSAGE STTUCTUIE ..ot 13
3T EIEMENTS AEIINITION .o 13
3.11 Beginning and eNdiNg MATKEISuiiiiiiee et e et e e e et e e e s et e e e e e ateeeeenbeeeeenreeeeenrens 13
3.1.2 1] (o Y=Y o F- T =1 o] SRR 13
3.1.3 B (e [Ty ol T o T TSP 14
3.14 B 1= < T2 e [TP 15
4 \\MarathonTP COMMANTS ..o 16
A0 VariabIe TEATING ... 16
4.1.1 RO O LTy o (o] 1o - | AU PR 16
4.1.2 ANSWET FOIMAT .ttt ettt s e st st e e e et e e s b e e sae e san e sabeear e e bt e beesreesmneenreeneens 17
4.2 VariaDIE WITTING ... 18
4.2.1 2T UL o {e T4 0 o - | USSR PPR 18
4.2.2 ANSWET FOIMAT 1.ttt s e sttt e e e e bt e s bt e sbe e san e st e e bt e bt e reesreesaeeenreeneens 19
4.3 TRE DISCOVEIY ..o 19
43.1 2 O=To OIS o {o T4 o o - | PSSR PR 20
4.3.2 ANSWET FOIMAT 1.ttt ettt e s bt s et e et e et e e bt e s b e e s bt e sat e st e s bt e b e e beesmeesaeeenreeneens 20
A4 ANSWET COUERS ...t 21
5 N\MESSAGE FIOWCNAIT ... 22
5.1 MESSAGE EIMISSION ...t 22
5.2 MESSAGE TECEIVING ..ottt 23
5.3 MESSAGE TECYCHNG ... 24

MarathonTP protocol specification V1.1

vAM \\Contents

6 \\CONGESTION CONTION ... 25
6.7 SENAING CONTTOIBT ..o 25
6.2 EXponential Dack=0fTo 25

7 NNSECUITTY o 27
T INO SECUNTEY ot 27
7.2 XTEA (€XIENAEA TEA) oo 27
7.3 AQVANCEA SECUITTY ..o 28

8 NNEXCNANGE TIST e 29
8.1 PreciSion ON reSEIVEA INGEXES ... 29

8.1.1 TaTo [t O o o - P SRR UPP 30
8.1.2 INAEX 1 i DEVICE SEIIAL c.eeeiiniiietie ettt ettt et e bt e st e e sabe e s bbeesabee e abeesabeesaneeesareesnnes 30
8.1.3 INdEX 2 : DEVICE IS TN IEE ..eeeieee ettt et st e bt e e s bt e et e e st e e snteesabeesnns 30
8.1.4 TaTo Loy e BT =Tol UL YA 1Y o Yo [T 30
8.1.5 INAEX 10 1 SENAEA COUNT ...ttt ettt sttt e b e b e s bt e s aeeeabeebeenbeesbeesaeesabesabeebeenneennees 30
8.1.6 INAEX 11 : RECEIVEA COUNT...ciiiiiiiiiieitie ettt ettt ettt e sttt e st e st e e s ate e s beeesabeesabeesbbeesabeeessbeesabeesaneeesaseesnnes 30
8.1.7 INAEX 12 : FAIEA COUNT...eiiiiiiiiieeie ettt ettt ettt sat e e s bt e e sabeesabeesbbeesabe e e abeesabeesaneeesabeesnnes 31
8.1.8 INAEX 13 1 RELIMEA COUNT ..ottt b e bt sttt e et e et e she e satesabesabeebeenbeennees 31
8.1.9 INdEX 14 : SUCCESSTUI PEI SECONMutiieieiieiiee ettt sttt et b e s be e st st s b e e beenbeesnees 31
8.1.10 Index 15 : Max Retransmit INTEIVAl.......coceiiiiiiiiieie ettt sttt eee e 31
8.1.11 INdeX 16 : MaX Retry AtLEMIPL ... eeieiiiiiiee ettt e et e e e stte e e e sbt e e e e sbteeeesbtaeeesnseaeessassneessnssneasanns 31
8.1.12 INAEX 17 I THMEOUL .cceuutiiiiieeiieeetee ettt e st e ettt e st e st e e sate e s bt e e sabee s bt eesabeesabaeesabeesabeesabbeesabaeesbeesaseesasaeesabeeesnenn 31

9 \\ProtoCol CONFOMMANCE ... 32
91 COMMUNICETION POMT .o 32
9.2 DIATA TYPES .. 32
9.3 PACKEL SIZE oo 32

MarathonTP protocol specification V1.1

YaAM \\List of figures [N

\\List of figures

FIGUIE T 7 OSTIMOTE ... 10
Figure 2 : MarathoTP packet fOrMatco.ovoioeeeeee e 13
Figure 3 List Of TrIPlE ODJECES ... 15
Figure 4 EMISSION fIOWCNAIToooeeeeeeee e 22
Figure 5 : ReCEIVING FIOWCNAIT ... 23
Figure 6 : RECYCING fIOWCNAI ..o 24

MarathonTP protocol specification V1.1

file:///C:/Users/Jasmin/SkyDrive/Documents/MarathonTP/ReferenceManualEnglishV1.1.docx%23_Toc421897621
file:///C:/Users/Jasmin/SkyDrive/Documents/MarathonTP/ReferenceManualEnglishV1.1.docx%23_Toc421897622

M\ \\List of tables [[EJ

\\List of tables

Table 11 ProtOCOl Aata TYPES ... 11
Table 2 1 RESEIVEA CNAIACTEIS.o 12
Table 3 2 DESCIIPTON FIEIAS ... 14
Table 4 : Elements Of @ r€A0 MEGUEST ..o 16
Table 5 1 Elements Of @ r€aA GNSWET ... 17
Table 6 : Elements Of @ WIHTE TEQUEST ... 18
Table 7 1 Elements Of @ WITTE GNSWET ... 19
Table 8 : Elements Of @ DISCOVENY TEQUESTvviveieeeeeeeee e 20
Table 9 : Elements Of @ DISCOVENY @NSWETo.iiiiiiiieieee e 20
Table 10 : MarathoNTP €ITOr COUES ... 21
TabIE 1T 2 SECUITY MIOTES ... 27
Table 12 : Index range diStrDUTION. ... 29

MarathonTP protocol specification V1.1

AWM \\Introduction
T \\Introduction

MarathonTP is a machine to machine (M2M) communication protocol. It is designed to be
simple to implement and can be adapted to a multitude of platform capable of handling strings. It
enables a reliable message exchange between devices with limited resources. These devices often use
8-32 bit cheap microcontrollers.

MarathonTP is distinguished by the fact that it says "human readable". In effect, the transmitted
messages are actually strings of UTF-8 format. Thus, during its implementation, it is easy to confirm
the structure of the transmitted messages with network analysis tools such as Wireshark.

According to the OSI model (Open Source Interconnection), MarathonTP is a layer 7 protocol, either
the application layer. From the point of view of the OSI model, the application layer is responsible for
the representation of data to the user, their coding and control of the dialogue between the systems.
MarathonTP sets a standardized message structure as well as a methodology for reliable transfer.
MarathonTP can adapt to a wide range of transport protocol. Examples include RS-232, UDP/IP, etc.
This document does not cover the establishment of connections between the machines.

The name of the protocol has been chosen to describe the goals during its development. The
marathon represents a test of endurance and "TP" stands for "Transport Protocol". MarathonTP is a
reliable and sustainable information transport protocol.

7 - Application

eAccess point to network services
eData representation

6 - Presentation

eData encoding and encryption

5 - Session

eCommunication synchronisation
eTransaction management

4 - Transport

*Management of communication between process

3 - Network

*Routing
*Relay
*Flow control

2 - Data Link

eTransfer of data between nodes

1 - Physical

eTransmission of the raw bitstream

Figure 1 : OSI Model

MarathonTP protocol specification V1.1

vaM

\\Data types

\\Data types

The Protocol provides for the exchange of information in several types. To each of these types
corresponds a unique identifier. This allows the interpreter of the message to convert the string
received in the correct format. The following table provides a summary of the types that the protocol
supports :

Data types Description Identifier Allowed values
BOOLEAN | Contains values that can be only true or false. The = "Bo" "True"
True and False keywords correspond to the two "False"
states of Boolean variables.
INTEGER | Contains 32 bits (4 byte) signed integers. "In" All integer values between :
"-2147483648" and "2147483647"
SHORT Contains 16 bits (2 byte) signed integers. "Sh" All integer values between :
"-32768" and "32767".
USHORT Contains 16 bits (2 byte) unsigned integers. "ush" All integer values between :
"0" and "65535"
LONG Contains 64 bits (8 byte) signed integers. "Lo" All'integer values between :
"-922337236854775808" and
"922337236854775807"
SINGLE Contains IEEE 32 bits (4 byte) single precision @ "Si" For negative numbers :
floating point numbers. Single precision numbers from “- 3,4028235E+38"
store an approximation of a real number. to "- 1,401298E-45"

For positive numbers :
from "1,401298E-45"
to "3,4028235E+38"

DOUBLE Contains IEEE 64 bits (8 byte) single precision "Do" For negative numbers :
floating point numbers. Single precision numbers from “-1.79769313486231570E+308"
store an approximation of a real number. to "-4.94065645841246544E-324"

For positive numbers :
from "4.94065645841246544E-324"
to "1.79769313486231570E +308".

BYTE Contains 8 bits (1 byte) unsigned integers. "By" All integer values between :
"0"and "255".
STRING Represents a Unicode text character string. "St" All UTF-8 characters except
reserved characters “{", “}" and ":".
NUL Represents a zero value. This type is used in case = "Nil" The string “ Nil ”.
of error.

Table 1 : Protocol data types

MarathonTP protocol specification V1.1

vAM \\Data types

2.1 Numbers representation

MarathonTP supports the numbers under the fixed-point notation or scientific. On the other
hand, the Protocol sets no specific rule on the representation of one or other of the notations. The
following examples are all valid representations:

Examples:
0.000135569887426
1.35569887426E-05
220000000000000000
2.2E17

2.2 Notes on text strings

MarathonTP uses three specific UTF - 8 characters in its implementation. The use of these
characters in a text string will cause exceptions at the level of message interpreter. If these characters
must be transferred from one application to the other a mechanism must be devised by the developer.

UTF-8 character Function

{ Message beginning marker.
(Hex 7B)
} Message ending marker.

(Hex 7D)
: Field separator.
(Hex 3A)

Table 2 : Reserved characters

MarathonTP protocol specification V1.1

vaM

3

3.1

\\Message structure

\\Message structure

The MarathonTP protocol defined a specific message model which allows compatible devices

to exchange information between them.

A MarathonTP message, which is also called '‘package’, consists of four basic elements.

1. The beginning and ending of message markers
2. The field separators

3. The descriptor

4. The payload

Start Descriptor Payload End

Figure 2 : MarathoTP packet format

Elements definition

3.1

3.1.2

Beginning and ending markers

MarathonTP messages start with the UTF-8 character “{", Hex 7B and ends with the UTF-
8 character "}" Hex 7D.

It's two characters reserved by the protocol that cannot be part of the message itself. (See
paragraph 2.2 for exception handling)

Field separators

The field separators delimit the different elements of a package. They are present only
in the descriptor and the payload. They are represented by the UTF-8 character “", Hex 3A.

It's a characters reserved by the protocol that cannot be part of the message itself. (See
paragraph 2.2 for exception handling)

MarathonTP protocol specification V1.1

A/ \\Message structure

3.1.3 The descriptor

The descriptor is used to identify the nature of the message. It contains 4 mandatory
descriptive elements. The following table shows the enumeration of these elements:

Field Description Condition Allowed values \
VER Protocol version. Mandatory ~ "1.0" or "1.1"

RA Message type "request" or "answer" Mandatory "R"or "A"

TNS Transaction number. Mandatory ~ "0-65535"

CMD Message command. Mandatory | "0-255"

Table 3 : Descriptor fields

VER : The protocol version allows the evolution of it. Thus, a particular system could answer
one or other of the available versions according to used features. This field provides the
interoperability of systems.

RA : The message type. For each command there are two types of message. The request "R”
and the answer "A".

TNS : The transaction notion allows the traceability of a message between two systems. All
active message must have a unique transaction number. As the number is limited to 65536, it
is possible to resume numbers already used. As long that the uniqueness rule is respected.

CMD : There are three types of MarathonTP message. These are detailed in point 4.

MarathonTP protocol specification V1.1

AWM \\Message structure

3.1.4 The payload

The payload is the main part of the message. It is at this level that is found all data
exchange between the machines. The payload is in the form of a list of object. The format of
these objects varies according to the nature of the exchanged message. There are three object
types: single, double and triple containing respectively 1, 2 and 3 elements. The following figure
illustrates an example of a list of triple objects:

Payload
Object
CODE

Object
CODE

Object

CODE

Figure 3 : List of triple objects

MarathonTP protocol specification V1.1

vaM

4.

\\Message commands

\\MarathonTP commands

MarathonTP follows a request/response transaction model. This model contains two types of
command. Each of these commands set a specific task to be performed by the system which receives
it.

As seen in section 3.1.3 the message command is the 4 parameter of the descriptor. This is a required
element. The protocol is intended to define up to 255 different commands. At the present time,
MarathonTP defined two separate commands. The structure of message associated with each of these

commands follows a specific format. The compliance of a MarathonTP implementation depends
largely on the respect of this formatting.

As the Protocol is a request/response, there are two query formats and two response formats. For a
total of 4 different formats.

Variable reading

It is the command "1". Reading variable is used to get the value of one or more items in the
exchange list of the target system. See point 8 for more detail about exchange list. The maximum
number of element that can be read with the same query is limited to 10. Combining multiple items in
a single query allows, in many scenario, a maximization of the bandwidth of the underlying network.

411 Request format

The following table lists the various elements of the request.

Elements Description Allowed values
VER Protocol version. "1.0" or "1.1"
RA Message type "request" or "answer". "R"

TNS Transaction number. "'0-65535"
CMD Message command. "
Enumeration start.

ELE Exchange list element. "0-65535"

Enumeration end.

Table 4 : Elements of a read request

MarathonTP protocol specification V1.1

vaM

4.1.2

Message example:

1.0 R 25693 1 0
VER RA TNS CMD ELE

Packet: {1.0:R:25693:2:0:1}

Answer format

\\Message commands

The answer enumeration must match the enumeration of the corresponding request.
Each element is accompanied by a response code as defined in point 4.4.

For any response code different of 0, it is mandatory to use the element type "NUL" in

table 1T with a value of 0.

Elements Description

Allowed values

VER Protocol version. "1.0" or "1.1"
RA Message type "request" or "answer". A"
TNS Transaction number. "0-65535"
CMD Message command. "
Enumeration start.
CODE Answer code. See table 10
TYP Element type See table 1
VALUE Element value See point 2

Enumeration end.

Table 5 : Elements of a read answer
Example 1: Resulting message from point 4.1.1 request. :
1.1 A 25693 1 0 Si 84.83 0 Do 8.936E+10

VER RA TNS CMD CODE TYPE VALUE CODE TYPE VALUE

Packet: {1.1:A:25693:1:0:5i:84.83:0:D0:8.936E+10}

Example 2: Resulting message from point 4.1.1 request, but element “1" is not part of the
receiver exchange list. :

11 A 25693 1 0 Si 84.83 1 Nil 0
VER RA TNS CMD CODE TYPE VALUE CODE TYPE VALUE

Packet: {1.1:A:25693:1:0:5i:84.83:1:Nil:0}

MarathonTP protocol specification V1.1

M\ \\Message commands

4.2 Variable writing

It is the command "2". The writing of variable is used to update the value of one or more
elements in the exchange list of the target system. See point 8 for more detail about exchange list.
The maximum amount of element that can be updated with the same query is limited to 10.
Combining multiple items in a single query allows, in many scenario, a maximization of the
bandwidth of the underlying network.

421 Request format

The following table lists the various elements of the request.

Elements Description Allowed values
VER Protocol version. "1.0" or "1.1"
RA Message type "request" or "answer". "R"

TNS Transaction number. "0-65535"
CMD Message command. 2"
Enumeration start.

ELE Exchange list element. "0-65535"
VALUE Value to be entered in the element. See point 2

Enumeration end.

Table 6 : Elements of a write request
Message example :

11 R 25693 2 0 25.6 1 8.15698563
VER RA TNS CMD ELE VALUE ELE VALUE

Packet : {1.1:R:25693:2:0:25.6:1:8.15698563}

MarathonTP protocol specification V1.1

M\ \\Message commands

422 Answer format

A variable writing returns no value. Simply an answer code. The order in which are
sent the answer codes is the same as that of the corresponding request message.

Elements Description Allowed values
VER Protocol version. “1.0" or "1.1"
RA Message type "request” or "answer". A"

TNS Transaction number. "0-65535"
CMD Message command. 2"
Enumeration start.

CODE Answer code. See table 10

Enumeration end.

Table 7 : Elements of a write answer

Example of resulting message from point 4.2.1, but element “1" is not part of the receiver
exchange list.

1.1 A 25693 2 0 1
VER RA TNS CMD CODE CODE

Packet : {1.1:A:25693:2:0:1}

4.3 The Discovery

Itis the command "3". The Discovery is used to verify the existence of a compatible MarathonTP
system to a defined IP address. The Discovery is a special request that does not attach to the standard
send/receive process as defined in point 5. Thus, the transaction number is defined as compatibility
with other commands. The Discovery can be especially effective in network broadcast mode. Thus, a
single request should generate as much response as there are MarathonTP systems on the network.
The Discovery uses the index 2 and 3 of the exchange list that returns the IS ID of the system as well
as the security mode of the latter. See section 7 for more information on security codes. The correlation
of the response with the Inertia Systemes open database is left to the system using it.

Note :

The discovery is always used without any security level. Therefore, in broadcast mode, the
protocol sets to 5 seconds the minimum timeout before sending a new request, limiting the network
load.

MarathonTP protocol specification V1.1

vaM

4.3

\\Message commands

Request format

The following table lists the various elements of the Discovery request. The element "2"

should always precede the element “3",

Elements Description P\ [ERZINES

VER Protocol version. 11"

RA Message type "request” or "answer". "R"

TNS Transaction number. "0-65535"

CMD Message command. '3"
Enumeration start.

ELE Exchange list element. 2" or "3"

Enumeration end.

Table 8 : Elements of a Discovery request
Message example:

1.1 R 25693 3 2 3
VER RA TNS CMD ELE ELE

Packet: {1.1:R:25693:3:2:3}

432 Answer format

The Discovery answer enumeration must match the enumeration of the corresponding

request. Either the element “2" follow-up of the item “3" from the exchange list. Each element
is accompanied by a response code as defined in point 4.4.

For any response code different of 0, it is mandatory to use the element type "NUL" in

table 1 with a value of 0.

Elements Description Allowed values
VER Protocol version. 11"

RA Message type "request” or "answer". A"

TNS Transaction number. "0-65535"
CMD Message command. '3
Enumeration start.

CODE Answer code. See table 10
TYP Element type See table 1
VALUE Element value See point 2

Enumeration end.

Table 9 : Elements of a Discovery answer

MarathonTP protocol specification V1.1

A/ \\Message commands

Example of resulting message from point 4.3.1:

11 A 25693 3 0 St 76be3439-414b-4646- 0 By 0
808d-af457aabddd6
VER RA TNS CMD CODE TYP VALUE CODE TYP VALUE

Packet: {1.1:A:25693:3:0:5t:76be3439-414b-4646-808d-af457aabddd6:0:By:0}

4.4 Answer codes

All MarathonTP answers are accompanied by code defining the state of the transaction.
There are circumstances where MarathonTP requests will cause errors in systems that will run them.
The protocol provides four types of error defined by a numeric code, shown in the following table. :

Error code Description

0 Operation successfully completed.

1 Element not found

2 Incompatible data type. This error occurs on variable
writing.

3 Index out of range of exchange list limits.

Table 10 : MarathonTP error codes

MarathonTP protocol specification V1.1

YaAM \\Message flowchart

5 \\Message flowchart

MarathonTP messages are request/answer. This methodology implies that sending a message
to a receiver must end with an answer received by the sender. All within a time limit defined by the
congestion control. (See item 6) If these conditions are not met then the message is considered lost
and must be sent again if necessary.

Note : The Discovery is a particular type of message which does not require answer. A Discovery
request and answer must be treated as unique events associated with a dummy transaction.

51 Message emission

The following flowchart illustrates the sequence of operation for the MarathonTP request
message transmission.

ransmission
Start

Request
message
formatting

Minimum
sending timeout
is reached?

Discovery

Yes Message?

I.J-NO

Yes Mo

!

Transfering
message on
the network and
reset send delay

Available
space in
the list of
message to
sand?

Add the message
Y e5—m to the list of
messages to send

Transmission

end

Figure 4 : Emission flowchart

MarathonTP protocol specification V1.1

AWM

5.2

Message receiving

\\Message flowchart

The following flowchart illustrates the sequence of operation for the MarathonTP message

receiving.

‘1 from the list of

Receiver
initializ ation

Waiting

(* for message W K

Message

in data buffer? N
Yes
Yes
Is this

a request? Yes—»

No

Is this a
Discovery
answer?

Request handling

Transferring answer

Answer handling

|

Removing message

message to send

Discovery answer
handling

on the network

Figure 5 : Receiving flowchart

MarathonTP protocol specification V1.1

vaM

5.3 Message recycling

The following flowchart illustrates the sequence of operation for the MarathonTP message

recycling.

Recycling
start

MNon

i = Listlength?

F

Oui

Itam i from
list of message
to send

i+1

is empty?

Transfert
Mon

delay
elapsed?

Oui

Maximum
number of
try reached?

Transferring
message
on the network

Dui

Increment the failed
message count

Remove elementi
from the list of
message to send

Figure 6 : Recycling flowchart

MarathonTP protocol specification V1.1

\\Message flowchart

vaM

6.1

6.2

\\Congestion control

\\Congestion control

The burden of congestion control is mainly based on MarathonTP servers. For their part, clients
always transmit responses according to a logic of the best effort. In other words, as soon as a request
is processed the answer is immediately sent to the server. In situations where the network load is high,
it is imperative to introduce messages emissions control. The basic mechanisms used for this purpose
by MarathonTP are the exponential back-off and the sending controller. Each aimed to limit messages
sending to avoid network overload.

Sending controller

In MarathonTP, the sending controller maximizes the capabilities of the transfer and processing
of MarathonTP devices. Indeed, in an exchange between a client and a server, some of the waiting
period between the emission of the message and the receipt of the response is induced by the
message processing. A properly configured sending controller could send messages to a server with
a greater rate than the average response time

The protocol provides a list of message to send. It is a stack containing all messages waiting for
transfer to a specific recipient. There are as many message stack that active recipient within the
application. This type of attribution allows to evaluate the congestion control scenarios tailored to each
recipient. This type of analysis prevents the deterioration of sending capabilities to devices whose
response times are good. If the list is full, no new messages can be transmitted over the network. The
size of the list is a factor calculated by the sending controller.

Note :

At present, the protocol specification limits the list of message to send to a single element by
recipient. A definition of the sending controller is expected in a future specification

Exponential back-off

This mechanism increase the "TimeOut" time of a message answer if this time limit has already
been reached. The increase is calculated by a multiplication factor of 2 each time the previous time is
reached. Two parameters affect the operation of this congestion control. This is the "Max Retransmit
Interval" and "Max Retry Attempt". (See paragraph 8 for the definition of these parameters). In all
cases, a message may be transmitted again on the network if any of the above parameters is reached.
In such a case, the message is removed from the message list of and the "Failed Message Count”
variable is incremented.

MarathonTP protocol specification V1.1

YaAM \\Congestion control

The protocol define the initial "TimeQut" to 3 seconds. Each of "TimeOut", "Max Retransmit
Interval" and "Max Retry Attempt" parameters are modifiable by implementing such functionality. In
accordance with REC 5405, minimum "TimeOut" is set at 1 second.

MarathonTP protocol specification V1.1

http://tools.ietf.org/html/rfc5405

vaM

7.

7.2

\\Security

\\Security

Because MarathonTP was designed to provide a means of communication for the internet of
things (loT), it is required to provide a secure information exchange method. By cons, it is essential to
consider that most of the loT devices have low processing capabilities. Thus, the protocol provides
three levels of security. The implementation must provide a way to change the security mode of the
device using it. The Discovery answer (point 4.3.2) must include information specifying the security
mode of the requested device. This way, clients can adjust their communication by using the correct
mode. The following table summarizes the security modes that the protocol supports:

Security mode Allowed values

NONE « 0 »
XTEA «1»
ADVANCED «2»

Table 17 : Security modes

No Security

A device in this mode will exchange messages over the network with any other third parties
using non-encrypted raw text message. It is the responsibility of the user to understand the
implications of using this type of transmission.

XTEA (eXtended TEA)

XTEA is a secure encryption algorithm that uses a 128-bit key and requires little CPU power. It
is an ideal choice in the context of the Internet of things (IoT). Itis important to note that this encryption
is not as secure as more complex implementations such as RSA for example. Refer to the following
website for XTEA implementation examples: http://marathontp.info

MarathonTP protocol specification V1.1

http://marathontp.info/

A\\WV/ \\Security

7.3 Advanced security

No advanced encryption technology has yet been set for the protocol. This feature will be
presented in a future version.

MarathonTP protocol specification V1.1

vaM

8 \\Exchange list

\\Exchange list

The data access in MatahonTP are made through index. These indexes are “UShort” data type.
There are therefore 65536 distinct data that can be transferred between two MarathonTP systems
including 65436 usable by third parties.

A certain amount of these data are reserved by the protocol itself. The following table shows the index

ranges distribution.

Index
0
1
2

3t09

10

11

12

13

14

15 to 99
100 to
65535

Element

Ping

Device Serial
Device IS Identifier

Sended Count
Received Count
Failed Count

Retried Count
Successful Per Second

Type
Boolean

String
String

Integer
Integer
Integer
Integer
UShort

Description

MarathonTP ping answer.
Device serial number.

Inertia Systemes unique identifier for the
device.

MarathonTP reserved.

Sended message count.
Received message count.

Failed message count.

Retried message count.
Successfull message per second.
MarathonTP reserved.

Usable by third parties.

Table 12 : Index range distribution.

It's the role of the designer of the device to provide a document specifying the function of the 65436
indexes available for its needs. It's this document which constitutes the exchange list. The exchange
list should be accessible to any user of the device.

8.1 Precision on reserved indexes

The following points describe more accurately the nature and function of the protocol reserved

indexes.

MarathonTP protocol specification V1.1

M\ \\Exchange list

8.11 Index 0 : Ping

"Ping” simply returns to the client a response of boolean data type whose value is true.
A true response by the client indicates the existence of an active server for the queried IP
address.

8.1.2 Index 1: Device Serial

The unigue serial number of the device, presented in textual form. The serial number is
specific to the manufacturer of the device.

8.1.3 Index 2 : Device IS Identifier

Unique device identifier provided by Inertia Systemes during the approval of
MarathonTP compliance. This textual identifier allows services and softwares to consult the
Inertia Systemes device database to obtain the characteristics of the product.

8.14 Index 3 : Security Mode

Number between 0 and 2 inclusive that represents the security mode of the queried
device.

815 Index 10 : Sended Count

Incremental number representing the amount of message sent by the device. This
parameter is useful for purposes of analysis and statistics. The device must manage the overflow
of an “Integer” with return to 0.

8.1.6 Index 11 : Received Count

Incremental number representing the amount of message received by the device. This
parameter is useful for purposes of analysis and statistics. The device must manage the overflow
of an “Integer” with return to 0.

MarathonTP protocol specification V1.1

YaAM \\Exchange list

817 Index 12 : Failed Count

Incremental number representing the amount of message which have never been
interpreted by the receiver. This parameter is useful for purposes of analysis and statistics. The
device must manage the overflow of an “Integer” with return to 0.

8.1.8 Index 13 : Retried Count

Incremental number representing the amount of message resent by the device. This
parameter is useful for purposes of analysis and statistics. The device must manage the overflow
of an “Integer” with return to 0.

8.1.9 Index 14 : Successful Per Second

Number representing the amount of message correctly exchanged between two
MarathonTP devices every second. This number is updated every seconds. This parameter is
useful for purposes of analysis and statistics.

8110 Index 15 : Max Retransmit Interval

Number in milliseconds representing the absolute maximum time limit for the issuing a
message.

8.1.11 Index 16 : Max Retry Attempt

Number of allowed retry.

8112 Index 17 : TimeOQut

Number in milliseconds representing the delay allowed between sending a message
and receiving an answer.

MarathonTP protocol specification V1.1

vaM

9

9.1

9.2

9.3

\\Protocol conformance

\\Protocol conformance

To ensure the compatibility of the MarathonTP protocol between various technologies and
systems, some fundamentals must be observed.

Communication port

MarathonTP has a reserved UDP/IP communication port. It is the port 8384.

Data types

At a minimum, all data types in table 1 must be available.

Packet size

Although MarathonTP limits to 10 the number of element per packet, it remains the
responsibility of the developer to respect the constraints of the used transport protocol. Packets must
not be splitted.

MarathonTP protocol specification V1.1

